Abstract

Environmental changes in intensive aquaculture commonly lead to hypoxic stress for cultured largemouth bass (Micropterus salmoides). To better to understand the hypoxic stress response mechanisms, the miRNA expression profiles of the livers of largemouth bass exposed for 24 h to three different dissolved oxygen levels (7.0 ± 0.2 mg/L as control, 3.0 ± 0.2 mg/L and 1.2 ± 0.2 mg/L) were compared. In this study, a total of 266 known miRNAs were identified, 84 of which were differentially expressed compared with the control group. Thirteen of the differentially expressed miRNAs (miR-15b-5p, miR-30a-3p, miR-133a-3p, miR-19d-5p, miR-1288-3p, miR456, miR-96-5p, miR-23a-3p, miR-23b-5p, miR-214, miR-24, miR-20a-3p, and miR-2188-5p) were significantly enriched in VEGF signaling pathway, MAPK signaling pathway, and phosphatidylinositol signaling system. These miRNAs were significantly downregulated during stress, especially after a 4-h exposure to hypoxia. In contrast, their target genes (vegfa, pla2g4a, raf1a, pik3c2a, clam2a, inpp1, pi4k2b, mtmr14, ip6k, itpkca, map3k7, and Jun) were significant upregulated after 4 h of hypoxic stress. Moreover, two potential hypoxia-tolerance signal transduction pathways (MAPK signaling pathway and phosphatidylinositol signaling system) were revealed, both of which may play important roles in responding to acute hypoxic stress. We see that miRNAs played an important role in regulating gene expression related to physiological responses to hypoxia. Potential functional network regulated by miRNAs under hypoixic stress in the liver of largemouth bass (Micropterus salmoides). Blue boxes indicated that the expression of miRNA or target genes were down-regulated. Red boxes indicated that the expression of miRNA or target genes wasere up-regulated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call