Abstract

MicroRNAs (miRNAs) play an important role in various biological functions. According to many studies, miRNA expression is tissue-specific, strongly controlled throughout embryogenesis, and over- or under-expressed in numerous disorders, including cardiovascular pathologies. This study aimed to screen, characterize, and profile many induced biomarkers (miRNAs) in dog serum before and after experimentally inducing a regional myocardial infarction (MI) by occluding the coronary arteries under general anesthesia. A preclinical experimental animal study recruited 12 healthy canine dogs. The selected canine dogs were anesthetized with 1 mg/kg xylazine and 15 mg/kg ketamine before undergoing femoral arterial catheterization under fluoroscopic supervision. Commercial assay kits were used to purify total RNA and miRNA before the occlusion and 2 h after the occlusion according to the manufacturer's guidelines, and the samples were stored in RNase/DNase-free water at -80°C. Data were analyzed by GraphPad Prism 5.0 software (GraphPad Prism, San Diego, CA) SPSS, and GenEx software (www.multid.se) or (REST V3). Among 325 transcribed genes, 20 were identified in 2 h. After MI, 14 biomarkers were negative, indicating downregulation, and 6 (3-F08, 3-B10, 4-A11, 1-A06, 2-E01, 3-F10) were positive, indicating upregulation. Polymerase chain reaction assay results showed a normalized fold-change in gene expression in the test sample. Fold values >1 represented a biologically significant change. Profiling of miRNAs before and after MI in a dog model revealed upregulation of six previously unidentified biomarkers (3-F08, 3-B10, 4-A11, 1-A06, 2-E01, and 3-F10), indicating various miRNA regulatory patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call