Abstract
Postnatal dietary modulation of microRNAs (miRNAs) and effects on miRNA–mRNA interactions in tissues remain unknown. This study aimed to investigate whether dietary factors (formula vs. breastfeeding) affect mammary miRNA expression and to determine if these changes are concurrent with developmental alterations of the mammary gland in neonatal piglets. Female Yorkshire/Duroc piglets were fed sow's milk or cow's milk- or soy-based infant formula (from postnatal day 2 to day 21; n=6/group). Differentially expressed miRNAs were determined using mammary miRNA profiling, followed by miRNA and mRNA expressions characterized by quantitative reverse-transcription polymerase chain reaction. Milk and soy formulas reduced expressions of miR-1, -128, -133a, -193b, -206 and -27a; miRNA down-regulation altered mRNA expressions of genes (e.g., Ccnd1, Tgfb3, Igf1r and Tbx3) that were consistent with enhanced cell proliferation and suppressed apoptotic processes in the developing mammary gland. Interestingly, down-regulation of miR-1, -128 and -27a also correlated with increased mRNA genes such as Hmgcs and Hmgcr encoding cholesterol synthesis in the mammary glands in response to lower circulating cholesterol levels. Infant formula feeding affected mammary miRNA profiles in neonatal piglets, concurrent with increased expression of cell proliferation and cholesterol synthesis genes, suggesting early nutritional modulation of miRNAs may contribute to regulation of proliferative status and cholesterol homeostasis of developing mammary glands during infancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.