Abstract

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-associated mortality worldwide. Although surgery is considered the most effective treatment for patients with HCC, its indication is restricted by limited criteria and a high relapse rate following surgery; therefore, systemic chemotherapy is required for patients with advanced-stage HCC to prolong their survival. MicroRNAs (miRNAs) are endogenous non-coding RNAs of 18–22 nucleotides in length. It has been reported that aberrant expression of miRNAs is a feature shared by various types of human cancer. Previous studies have indicated that the modulation of non-coding RNAs, particularly miRNAs, may be a valuable therapeutic target for HCC. The aim of the present study was to elucidate the miRNA profiles associated with differentiation and hepatitis B virus (HBV) infection observed in HCC cell lines. The human Alex, Hep3B, HepG2, HuH1, HuH7, JHH1, JHH2, JHH5, JHH6, HLE, HLF and Li-7 HCC cell lines were used for an miRNA array. Replicate data were analyzed following their classification into: i) Poorly- and well-differentiated human HCC cells and ii) HBV-positive and -negative human HCC cells. Out of the 1,719 miRNAs, 4 were found to be significantly upregulated and 52 significantly downregulated in the poorly-differentiated cells, as compared with the well-differentiated cells. Conversely, in the HBV-positive cells 125 miRNAs were found to be upregulated and 2 downregulated, as compared with the HBV-negative cells. Unsupervised hierarchical clustering analysis with Pearson's correlation revealed that the miRNA expression levels were clustered both together and separately in each group. In conclusion, miRNA profile characterization based on various parameters may be a novel approach to determine the etiology of HCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.