Abstract

Krüppel homolog1 (Kr-h1) is a juvenile hormone (JH) response transcriptional factor that transduces JH signalling to repress insect metamorphosis in both hemimetabolous and holometabolous insects. While few studies about microRNAs (miRNAs) downregulating Kr-h1 expression to mediate insect metamorphosis have been demonstrated in hemimetabolous insects, the miRNAs that target the Kr-h1 of holometabolous insects have not been reported. Here, we identified two miR-927 binding sites within the 3'UTR region of Kr-h1 in Drosophila melanogaster, and miR-927 was found to downregulate the expression of Kr-h1. The expression profiles of miR-927 and Kr-h1 displayed relatively opposite pattern during most of the larval development stages. Overexpression of miR-927 in the fat body significantly decreased the expression of Kr-h1 and resulted in reduced oviposition, increased mortality, delayed pupation, and reduced pupal size. Notably, the co-overexpression of Kr-h1 rescued the developmental and growth defects associated with miR-927 overexpression, indicating that Kr-h1 is a biologically relevant target of miR-927. Moreover, the expression of miR-927 was found to be repressed by JH and its receptor Met/gce, forming a positive regulatory loop of JH signalling. Overall, our studies support a conserved role for the JH/miRNA/Kr-h1 regulatory axis in growth control during insect development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call