Abstract

BackgroundMicroRNA (miRNA)-mediated control of gene expression suggests that miRNAs are interesting targets and/or biomarkers in the treatment of anxiety- and trauma-related disorders, where often memory-associated gene expression is adversely affected. MethodsThe role of miRNAs in the rescue of impaired fear extinction was assessed using the 129S1/SvlmJ (S1) mouse model of impaired fear extinction. miRNA microarray analysis, reverse transcription polymerase chain reaction, fluorescent in situ hybridization, lentiviral overexpression, and Luciferase reporter assays were used to gain insight into the mechanisms underlying miRNA-mediated normalization of deficient fear extinction. ResultsRescuing impaired fear extinction via dietary zinc restriction was associated with differential expression of miRNAs in the amygdala. One candidate, miR-144-3p, robustly expressed in the basolateral amygdala, showed specific extinction-induced, but not fear-induced, increased expression in both extinction-rescued S1 mice and extinction-intact C57BL/6 (BL6) mice. miR-144-3p upregulation and effects on subsequent behavioral adaption was assessed in S1 and BL6 mice. miR-144-3p overexpression in the basolateral amygdala rescued impaired fear extinction in S1 mice, led to enhanced fear extinction acquisition in BL6 mice, and furthermore protected against fear renewal in BL6 mice. miR-144-3p targets a number of genes implicated in the control of plasticity-associated signaling cascades, including Pten, Spred1, and Notch1. In functional interaction studies, we revealed that the miR-144-3p target, PTEN, colocalized with miR-144-3p in the basolateral amygdala and showed functional downregulation following successful fear extinction in S1 mice. ConclusionsThese findings identify a fundamental role of miR-144-3p in the rescue of impaired fear extinction and suggest this miRNA as a viable target in developing novel treatments for posttraumatic stress disorder and related disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.