Abstract

Sweat gland regeneration is important for patients with an extensive deep burn injury. In previous study, we reported that bone marrow-mesenchymal stem cells (BM-MSCs) could differentiate into sweat gland-like cells (SGLCs), but the underlying molecular mechanism remains unclear. Recently, microRNAs(miRNAs or miRs) are reported to manipulate many biological processes. However, whether the process of MSCs differentiation into sweat gland cells (SGCs) is regulated by miRNAs has not been reported. In this study, BM-MSCs were induced into SGLCs by co-culturing with SGCs. Differential expressions of miRNAs between BM-MSC and SGLCs were determined through miRNAs microarray and 68 miRNAs were found significantly changed in miRNA profile including hsa-miR-138-5p. Bioinformatics analysis showed that hsa-miR-138-5p targeted a group of nuclear factor-κB (NF-κB) related genes which play an important role in skin appendage development. As expected, hsa-miR-138-5p inhibitor transfected into BM-MSCs partly mimicked the effects of co-culture and increased the number of SGLCs by increasing the expression of NF-κB related genes. These results suggest that hsa-miR-138-5p and NF-κB are involved in the regulation of BM-MSCs differentiation into SGLCs. This study may also offer a new approach to yield SGCs for burn patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call