Abstract

Nervous necrosis virus (NNV) is one of the most destructive fish viruses and affects more than 120 marine and freshwater teleost species. However, the pathogenesis of NNV has not been made clear. MicroRNAs (miRNAs) play important roles in the regulation of viral infection. To understand the roles and regulation patterns of miRNAs in NNV infection, high-throughput sequencing was carried out in Lateolabrax japonicus brain (LJB) cells with or without red-spotted grouper NNV (RGNNV) infection at 12 and 24hr. Here, we identified 59 known and 61 novel differentially expressed miRNAs (DE miRNAs) between mock and RGNNV-infected LJB cells. KEGG pathway analysis showed that the target genes of DE miRNAs were significantly enriched in immune-related signalling pathways, such as autophagy, mitophagy and TGF-beta signalling pathways. The expression patterns of four DE miRNAs (lja-miR-145, lja-miR-182, lja-miR-183 and lja-miR-187) were verified by qRT-PCR both in vivo and in vitro. We found that lja-miR-145 promoted RGNNV proliferation, while lja-miR-183 suppressed RGNNV proliferation. Furthermore, lja-miR-145 facilitated RGNNV-induced autophagy activation, whereas lja-miR-183 repressed autophagy in LJB cells as measured by LC3B-II/I and p62 protein levels. All these results indicate the involvement of lja-miR-145 and lja-miR-183 in RGNNV-induced autophagy. In conclusion, this study provides evidence for the important roles of miRNAs in NNV infection and a basis for uncovering the molecular regulation mechanism of NNV-induced autophagy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call