Abstract

BackgroundMilk exosomes are a rich source of microRNAs (miRNAs) that are protected from degradation. Ingestion of milk and subsequent absorption of miRNAs into recipient cells by endocytosis may play a role in the regulation of neonatal innate and adaptive immunity. In contrast, the miRNA content of milk exosomes may also be indicative of a lactating animal’s health; whereby, the presence or absence of specific miRNAs could serve as biomarkers for early detection of bacterial infection that can lead to mastitis. In the present study, we therefore analyzed and compared miRNA expression profiles of milk exosomes from four Holstein cows obtained during mid-lactation prior to and after infection (48 h) of the mammary gland with Staphylococcus aureus.MethodsMilk exosomes, purified from control and S. aureus infected cows, were extracted for RNA. Following preparation indexed libraries from both groups the samples were subjected to next generation sequencing.ResultsNext generation sequencing of eight, unpooled small RNA libraries derived from milk exosomes produced about 60.5 million high-quality, bovine-specific sequence reads for comparison of miRNA expression between treatments. Sequence identity analysis showed the miRNAs make up about 13 % of the average RNA content of these exosomes. Although 417 known bovine miRNAs were identified, miRNAs represented the least diverse class of RNA accounting for only 1 % of all unique sequences. The 20 most prevalent unique sequences within this class accounted for about 90 % of the total miRNA-associated reads across samples. Non-annotated, unique reads provided evidence for another 303 previously unknown bovine miRNAs. Expression analyses found 14 known bovine microRNAs significantly differed in frequency between exosomes from infected and control animals.ConclusionsOur survey of miRNA expression from uninfected milk exosomes and those produced in response to infection provides new and comprehensive information supporting a role for delivery into milk of specific miRNAs involved in immune response. In particular, bta-miR-142-5p, and −223 are potential biomarkers for early detection of bacterial infection of the mammary gland. Additionally, 22 mammary-expressed genes involved in regulation of host immune processes and response to inflammation were identified as potential binding targets of the differentially expressed miRNAs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2044-9) contains supplementary material, which is available to authorized users.

Highlights

  • IntroductionMilk exosomes are a rich source of microRNAs (miRNAs) that are protected from degradation

  • Milk exosomes are a rich source of microRNAs that are protected from degradation

  • Sequence analysis of milk exosome miRNAs generation sequence analysis of the eight small RNA libraries derived from milk exosomes prior to (N = 4 control) and 48 h post S. aureus infection (N = 4 infected) yielded more than 76.4 million 36 nt sequences

Read more

Summary

Introduction

Milk exosomes are a rich source of microRNAs (miRNAs) that are protected from degradation. Numerous studies have found roles for miRNAs in regulation of gene expression for important biological processes including cellular proliferation and differentiation, tissue development, and immune response. Of interest for our study, miRNAs help regulate the development of immune cells and modulate the innate and adaptive immune responses [3]. MiR-146a functions as a negative regulator of TNF receptor-associated factor 6 and Interleukin-1 receptor-associated kinase 1 transcripts during and/or after the innate immune system responds to a bacterial infection [6]. These examples demonstrate how microRNAs can exert some regulatory control of the immune system within a cell. The presence of specific miRNAs in exosomes may be indicative of various pathological conditions and provide biomarkers for detection of certain disease conditions [7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call