Abstract

Hemoglobin E (HbE)/β-thalassemia is a form of β-hemoglobinopathy that is well-known for its clinical heterogeneity. Individuals suffering from this condition are often found to exhibit increased fetal hemoglobin (HbF) levels – a factor that may contribute to their reduced blood transfusion requirements. This study hypothesized that the high HbF levels in HbE/β-thalassemia individuals may be guided by microRNAs and explored their involvement in the disease pathophysiology. The miRNA expression profile of hematopoietic progenitor cells in HbE/β-thalassemia patients was investigated and compared with that of healthy controls. Using miRNA PCR array experiments, eight miRNAs (hsa-miR-146a-5p, hsa-miR-146b-5p, hsa-miR-148b-3p, hsa-miR-155-5p, hsa-miR-192-5p, hsa-miR-335-5p, hsa-miR-7-5p, hsa-miR-98-5p) were identified to be significantly up-regulated whereas four miRNAs (hsa-let-7a-5p, hsa-miR-320a, hsa-let-7b-5p, hsa-miR-92a-3p) were significantly down-regulated. Target analysis found them to be associated with several biological processes and molecular functions including MAPK and HIF-1 signaling pathways – the pathways known to be associated with HbF upregulation. Results of dysregulated miRNAs further indicated that miR-17/92 cluster might be of critical importance in HbF regulation. The findings of our study thus identify key miRNAs that can be extrinsically manipulated to elevate HbF levels in β-hemoglobinopathies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call