Abstract

BackgroundArchival formalin-fixed paraffin-embedded (FFPE) cancer tissue samples are a readily available resource for microRNA (miRNA) biomarker identification. No established standard for reference miRNAs in FFPE tissue exists. We sought to identify stable reference miRNAs for normalization of miRNA expression in FFPE tissue samples from patients with colorectal (CRC) and pancreatic (PC) cancer and to quantify the variability associated with sample age and fixation.MethodsHigh-throughput miRNA profiling results from 203 CRC and 256 PC FFPE samples as well as from 37 paired frozen/FFPE samples from nine other CRC tumors (methodological samples) were used. Candidate reference miRNAs were identified by their correlation with global mean expression. The stability of reference genes was analyzed according to published methods. The association between sample age and global mean miRNA expression was tested using linear regression. Variability was described using correlation coefficients and linear mixed effects models. Normalization effects were determined by changes in standard deviation and by hierarchical clustering.ResultsWe created lists of 20 miRNAs with the best correlation to global mean expression in each cancer type. Nine of these miRNAs were present in both lists, and miR-103a-3p was the most stable reference miRNA for both CRC and PC FFPE tissue. The optimal number of reference miRNAs was 4 in CRC and 10 in PC. Sample age had a significant effect on global miRNA expression in PC (50 % reduction over 20 years) but not in CRC. Formalin fixation for 2–6 days decreased miRNA expression 30–65 %. Normalization using global mean expression reduced variability for technical and biological replicates while normalization using the expression of the identified reference miRNAs reduced variability only for biological replicates. Normalization only had a minor impact on clustering results.ConclusionsWe identified suitable reference miRNAs for future miRNA expression experiments using CRC- and PC FFPE tissue samples. Formalin fixation decreased miRNA expression considerably, while the effect of increasing sample age was estimated to be negligible in a clinical setting.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-2030-2) contains supplementary material, which is available to authorized users.

Highlights

  • Archival formalin-fixed paraffin-embedded (FFPE) cancer tissue samples are a readily available resource for microRNA biomarker identification

  • A few of the miRNAs were associated with overall survival (OS), but the hazard ratio (HR) estimates for these miRNAs were close to the HR estimate of global mean miRNA expression

  • All of the analyses were repeated without removal of low expression measurements, but this did not result in any major changes in the results, apart from the anticipated increase in variability

Read more

Summary

Introduction

Archival formalin-fixed paraffin-embedded (FFPE) cancer tissue samples are a readily available resource for microRNA (miRNA) biomarker identification. No established standard for reference miRNAs in FFPE tissue exists. We sought to identify stable reference miRNAs for normalization of miRNA expression in FFPE tissue samples from patients with colorectal (CRC) and pancreatic (PC) cancer and to quantify the variability associated with sample age and fixation. MicroRNAs (miRNAs) are ~22 nucleotides long nonprotein-coding RNAs involved in post-transcriptional regulation of gene expression [1, 2]. Each miRNA targets specific genes through sequence complementarity between the miRNAs "seed" region (nucleotides 2–7) and a miRNA recognition element (MRE) in the mRNA, most often located in the 3'-untranslated region (3'UTR). Because of the targeting of the miRNA seed region to a specific 7-nucleotide MRE in the mRNA, each miRNA can potentially regulate the expression of hundreds of genes. Deregulation of miRNA expression is associated with cancer development, and changes in miRNA expression are associated with survival in patients with cancer [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call