Abstract

Breast cancer (BC) is the most commonly diagnosed cancer in women worldwide and is the leading cause of death among Hispanic women. Previous studies have shown that women with a low DNA repair capacity (DRC), measured through the nucleotide excision repair (NER) pathway, have an increased BC risk. Moreover, we previously reported an association between DRC levels and the expression of the microRNA (miRNA) let-7b in BC patients. MiRNAs can induce genomic instability by affecting the cell's DNA damage response while influencing the cancer pathobiology. The aim of this pilot study is to identify plasma miRNAs related to variations in DRC levels in BC cases. Hypothesis. Our hypothesis consists in testing whether DRC levels can be correlated with miRNA expression levels. Methods. Plasma samples were selected from 56 (27 cases and 29 controls) women recruited as part of our BC cohort. DRC values were measured in lymphocytes using the host-cell reactivation assay. The samples were divided into two categories: low (≤3.8%) and high (>3.8%) DRC levels. MiRNAs were extracted to perform an expression profile analysis. Results. Forty miRNAs were identified to be BC-related (p<0.05, MW), while 18 miRNAs were found to be differentially expressed among BC cases and controls with high and low DRC levels (p<0.05, KW). Among these candidates are miR-299-5p, miR-29b-3p, miR-302c-3p, miR-373-3p, miR-636, miR-331-5p, and miR-597-5p. Correlation analyses revealed that 4 miRNAs were negatively correlated within BC cases with low DRC (p<0.05, Spearman's correlation). Results from multivariate analyses revealed that the clinicopathological characteristics may not have a direct effect on specific miRNA expression. Conclusion. This pilot study provides evidence of four miRNAs that are negatively regulated in BC cases with low DRC levels. Additional studies are needed in order to have a complete framework regarding the overall DRC levels, miRNA expression profiles, and tumor characteristics.

Highlights

  • The American Cancer Society estimates that in 2019, 268,600 new breast cancer (BC) cases and 41,760 cancer-related deaths will occur in the US [1]

  • Differences between cases and controls regarding known BC risk factors were assessed for body mass index (BMI), pregnancy, parity, breastfeeding practices, use of oral contraceptives, regularity of menstrual periods, history of endometriosis, hysterectomy, age of hysterectomy, oophorectomy, age of oophorectomy, family history of cancer, and BC history

  • Our pilot study provides a link between specific miRNAs and DNA repair capacity (DRC) levels, through the Nucleotide excision repair (NER) pathway measured in lymphocytes

Read more

Summary

Introduction

The American Cancer Society estimates that in 2019, 268,600 new breast cancer (BC) cases and 41,760 cancer-related deaths will occur in the US [1]. In PR, 2,205 new BC cases and 444 BC deaths were reported by the Puerto Rico Cancer Registry in 2015 [3]. Dysregulation of various DNA repair pathways contributes to this genomic instability due to inability of the cell to repair certain types of DNA damage [5, 6]. Defective DNA repair measured in blood cells has been identified as a risk factor for different types of cancer [7,8,9], including BC [9]. NER is the predominant mechanism by which bulky DNA adducts are repaired. These can be formed by multiple sources of DNA damage including

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call