Abstract

We investigated sequence-specific and simultaneous microRNA (miRNA) detections by surface plasmon resonance (SPR) imaging measurements on SPR chips possessing an Au spot array modified with probe DNAs based on a miRNA-detection-selective SPR signal amplification method. MiRNAs were detected with the detection limit of the attomole level by SPR imaging measurements for different miRNA concentrations on a single chip. SPR signals were enhanced based on a combination process of sequence-specific hybridization of the miRNA to the probe DNAs, extension reaction of polyadenine (poly(A)) tails by poly(A) polymerase, binding of a ternary complex of T30-biotin/horseradish peroxidase (HRP)-biotin/streptavidin to the poly(A) tails, and the oxidation reaction of tetramethylbenzidine (TMB) on the HRP by providing a blue precipitate on the surface. This process sequence-specifically and dramatically amplified the SPR signals. This is a simple, cost-effective, and feasible signal amplification method based on the organic compound TMB instead of metal nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call