Abstract

Frontotemporal lobar degeneration describes a group of progressive brain disorders that primarily are associated with atrophy of the prefrontal and anterior temporal lobes. Frontotemporal lobar degeneration is considered to be equivalent to frontotemporal dementia. Frontotemporal dementia is characterized by progressive impairments in behavior, executive function, and language. There are two main clinical subtypes: behavioral-variant frontotemporal dementia and primary progressive aphasia. The early diagnosis of frontotemporal dementia is critical for developing management strategies and interventions for these patients. Without validated biomarkers, the clinical diagnosis depends on recognizing all the core or necessary neuropsychiatric features, but misdiagnosis often occurs due to overlap with a range of neurologic and psychiatric disorders. In the studies reviewed a very large number of microRNAs were found to be dysregulated but with limited overlap between individual studies. Measurement of specific miRNAs singly or in combination, or as miRNA pairs (as a ratio) in blood plasma, serum, or cerebrospinal fluid enabled frontotemporal dementia to be discriminated from healthy controls, Alzheimer's disease, and amyotrophic lateral sclerosis. Furthermore, upregulation of miR-223-3p and downregulation of miR-15a-5p, which occurred both in blood serum and cerebrospinal fluid, distinguished behavioral-variant frontotemporal dementia from healthy controls. Downregulation of miR-132-3p in frontal and temporal cortical tissue distinguished frontotemporal lobar degeneration and frontotemporal dementia, respectively, from healthy controls. Possible strong miRNA biofluid biomarker contenders for behavioral-variant frontotemporal dementia are miR-223-3p, miR-15a-5p, miR-22-3p in blood serum and cerebrospinal fluid, and miR-124 in cerebrospinal fluid. No miRNAs were identified able to distinguish between behavioral-variant frontotemporal dementia and primary progressive aphasia subtypes. Further studies are warranted on investigating miRNA expression in biofluids and frontal/temporal cortical tissue to validate and extend these findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.