Abstract

MicroRNAs are small noncoding RNAs that regulate gene expression; stabilize the cell phenotype; and play an important role in cell differentiation, development, and apoptosis. A canonical microRNA biogenesis pathway includes several posttranscriptional steps of processing and transport and ends with cytoplasmic cleavage of pre-miRNA by type III ribonuclease DICER to form a mature duplex, which is included in RISC. MicroRNA biogenesis and role in cell stress are still poorly understood. Using flow cytometry and high-throughput analysis of gene expression, we have shown that chronic endoplasmic reticulum (ER) stress, which is associated with improper protein folding in the ER, induce a cellular senescence phenotype in fibroblast-like FRSN cells. While acute ER stress can reduce miRNA biogenesis, chronic stress does not cause a significant drop in global microRNA expression and is accompanied by only a slight decrease in DICER1 mRNA expression. Heterogeneity with respect to lysosomal β-galactosidase activity was found to increase in the cell population exposed to ER stress. We do not exclude induced cell heterogeneity regarding expression of components of the microRNA biogenesis pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.