Abstract

Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide. HCC is characterized by a poor prognosis and an ever increasing number of scientific studies aim to find new diagnostic, prognostic, and therapeutic targets. MicroRNAs (miRNAs), small non-coding RNAs that regulate the gene expression in many processes, have been shown to play a crucial role in regulating hepatocellular carcinoma. miRNAs may act as oncogenic miRNAs and tumor suppressor miRNAs and regulate cancer cell proliferation, invasion, and metastasis by being differently upregulated or downregulated and targeting the genes related with carcinogenesis. miRNAs secreted from cancer cells are found circulating in the blood, presenting an opportunity for their use as disease-related biomarkers. Moreover, extracellular vesicle-derived miRNAs are known to reflect the cell of origin and function and may provide effective biomarkers for predicting diagnosis and prognosis and new therapeutic target in HCC. In this article, we describe the most recent findings regarding the molecular mechanisms and gene regulation of microRNA in HCC, as well as their application in diagnosis/prognosis and treatment.

Highlights

  • Hepatocellular carcinoma (HCC) is considered the second leading cause of cancer-related death worldwide[1]

  • Other studies found high levels of extracellular vesicles (EVs)-derived miR-21, an abundant miRNA expressed in HCC tissue, and this was an independent predictor of mortality and disease progression[109,110,111]

  • The miRNAs are being considered as new biomarkers and potential therapeutic targets for HCC [Figure 2]

Read more

Summary

Introduction

Hepatocellular carcinoma (HCC) is considered the second leading cause of cancer-related death worldwide[1]. Reported integrated analysis of the miRNA and mRNA expression in the liver tissues from a mouse model of HCC and observed a reduction of miR-193a-5p in murine and human HCC cells and tissues, leading to increased levels of NUSAP1 (nucleolar- and spindle-associated protein), which regulates cell proliferation by controlling spindle assembly and genomic stability .[47] an miR-193a-5p mimic and knockdown of NUSAP1 in Huh7 cells suppressed HCC development and migration.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.