Abstract

Inactivation of the Hippo pathway protects the myocardium from cardiac ischemic injury. MicroRNAs (miRs) have been reported to play pivotal roles in the progression of myocardial infarction (MI). The present study examined whether miR-93 could promote angiogenesis and attenuate remodeling after MI via inactivation of the Hippo/Yes-associated protein (Yap) pathway, by targeting large tumor suppressor kinase 2 (Lats2). It was identified that transfection of human umbilical vein endothelial cells with miR-93 mimic significantly decreased Lats2 expression and Yap phosphorylation, increased cell viability and migration, and attenuated cell apoptosis following hypoxia/reoxygenation injury. Moreover, increased expression of miR-93 resulted in an improvement of cardiac function, promotion of angiogenesis and attenuation of remodeling after MI. Additionally, miR-93 overexpression significantly decreased intracellular adhesion molecule 1 and vascular cell adhesion protein 1 expression levels, as well as attenuated the infiltration of neutrophils and macrophages into the myocardium after MI. Furthermore, it was found that miR-93 overexpression significantly suppressed Lats2 expression and decreased the levels of phosphorylated Yap in the myocardium after MI. Collectively, the present results suggested that miR-93 may exert a protective effect against MI via inactivation of the Hippo/Yap pathway by targeting Lats2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.