Abstract
In addition to being refractory to treatment, melanoma cancer stem cells (CSC) are known to suppress host antitumor immunity, the underlying mechanisms of which need further elucidation. In this study, we established a novel role for miR-92 and its associated gene networks in immunosuppression. CSCs were isolated from the B16-F10 murine melanoma cell line based on expression of the putative CSC marker CD133 (Prominin-1). CD133+ cells were functionally distinct from CD133- cells and showed increased proliferation in vitro and enhanced tumorigenesis in vivo. CD133+ CSCs also exhibited a greater capacity to recruit immunosuppressive cell types during tumor formation, including FoxP3+ Tregs, myeloid-derived suppressor cells (MDSC), and M2 macrophages. Using microarray technology, we identified several miRs that were significantly downregulated in CD133+ cells compared with CD133- cells, including miR-92. Decreased expression of miR-92 in CSCs led to higher expression of target molecules integrin αV and α5 subunits, which, in turn, enhanced TGFβ activation, as evidenced by increased phosphorylation of SMAD2. CD133+ cells transfected with miR-92a mimic and injected in vivo showed significantly decreased tumor burden, which was associated with reduced immunosuppressive phenotype intratumorally. Using The Cancer Genome Atlas database of patients with melanoma, we also noted a positive correlation between integrin α5 and TGFβ1 expression levels and an inverse association between miR-92 expression and integrin alpha subunit expression. Collectively, this study suggests that a miR-92-driven signaling axis involving integrin activation of TGFβ in CSCs promotes enhanced tumorigenesis through induction of intratumoral immunosuppression. SIGNIFICANCE: CD133+ cells play an active role in suppressing melanoma antitumor immunity by modulating miR-92, which increases influx of immunosuppressive cells and TGFβ1 expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.