Abstract

MicroRNAs (miRs) are known to play a pivotal role in tumorigenesis, controlling cell proliferation and apoptosis. In this study, we investigated the potential of miR-7 to prime resistant tumor cells to apoptosis in glioblastoma (GBM). We created constitutive and regulatable miR-7 expression vectors and utilized pharmacological inhibition of caspases and genetic loss of function to study the effect of forced expression of miR-7 on death receptor (DR) pathways in a cohort of GBM with established resistance to tumor necrosis factor apoptosis inducing ligand (TRAIL) and in patient-derived primary GBM stem cell (GSC) lines. We engineered adeno-associated virus (AAV)-miR-7 and stem cell (SC) releasing secretable (S)-TRAIL and utilized real time in vivo imaging and neuropathology to understand the effect of the combined treatment of AAV-miR-7 and SC-S-TRAIL in vitro and in mouse models of GBM from TRAIL-resistant GSC. We show that expression of miR-7 in GBM cells results in downregulation of epidermal growth factor receptor and phosphorylated Akt and activation of nuclear factor-kappaB signaling. This leads to an upregulation of DR5, ultimately priming resistant GBM cells to DR-ligand, TRAIL-induced apoptotic cell death. In vivo, a single administration of AAV-miR-7 significantly decreases tumor volumes, upregulates DR5, and enables SC-delivered S-TRAIL to eradicate GBM xenografts generated from patient-derived TRAIL-resistant GSC, significantly improving survival of mice. This study identifies the unique role of miR-7 in linking cell proliferation to death pathways that can be targeted simultaneously to effectively eliminate GBM, thus presenting a promising strategy for treating GBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call