Abstract

BackgroundRecent studies have suggested that microRNA-7 (miR-7) family members may play important roles in human cancer by regulating cell proliferation, apoptosis, migration, and invasion. Therefore, the present study aimed to investigate the clinical significance and biological function of miR-7 in colorectal cancer (CRC). MethodsInitially, cancer and adjacent tissues were collected from 76 patients with CRC. Then, microvascular density was detected using the Weidner counting method. The functional role of miR-7 in CRC was determined using ectopic expression, knockdown, and reporter assay experiments. The vasculogenic mimicry density was determined. Expression of miR-7, epidermal growth factor receptor (EGFR), extracellular signal–regulated kinase (ERK1/2), vascular endothelial growth factor, and thrombospondin-1 was determined. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays, scratch tests, and Transwell assays were conducted to examine cell proliferation, migration, and invasion, respectively. Finally, flow cytometry was applied to evaluate cell apoptosis. ResultsCRC tissues showed increased microvascular density and EGFR expression, activated ERK signaling, and miR-7 downregulation. EGFR was a target gene of miR-7. miR-7 overexpression and EGFR silencing decreased vasculogenic mimicry density, cell migration, and cell invasion, but increased cell apoptosis. In addition, miR-7 overexpression and EGFR silencing upregulated thrombospondin-1 and downregulated EGFR, ERK1/2, and vascular endothelial growth factor. Furthermore, we observed that the effect of miR-7 inhibition was abolished after EGFR silencing. ConclusionsOverexpressed miR-7 suppresses angiogenesis of CRC cells through ERK signaling by downregulating EGFR. It may identify new targets for CRC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.