Abstract

Increasing evidence suggests that microRNAs' (miRNAs) abnormal expression is one of the main factors of chemotherapy resistance in various cancers. However, the role of miRNAs in lung adenocarcinoma (LUAD) resistance to cisplatin is still unclear. In this study, we analyzed a microarray dataset to investigate miRNAs related to cisplatin resistance in LUAD. The expression of miRNAs in LUAD tissues and cell lines was detected using real-time quantitative polymerase chain reaction (RT-qPCR). Special AT-Rich Sequence-Binding Protein 2 (SATB2) in LUAD cell lines was detected using RT-qPCR and Western blot. Cell proliferation was measured by CCK8 and colony formation assays, while cell cycle and apoptosis were measured by flow cytometry. A dual-luciferase reporter assay was performed to confirm that SATB2 is a target gene of microRNA-660 (miR-660). We showed that the expression of miR-660 was not only decreased in LUAD cells and tissues but also further decreased in the cisplatin-resistant A549 cell line. The overexpression of miR-660 increased cisplatin sensitivity in LUAD cells. In addition, we identified SATB2 as a direct target gene of miR-660. We also revealed that miR-660 increased cisplatin sensitivity in LUAD cells via targeting SATB2. In conclusion, miR-660/SATB2 axis is a key regulator of cisplatin resistance in LUAD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.