Abstract

BackgroundTwo mature miRNA species may be generated from the 5’ and 3’ arms of a pre-miRNA precursor. In most cases, only one species remains while the complementary species is degraded. However, co-existence of miRNA-5p and -3p species is increasingly being reported. In this work, we aimed to systematically investigate co-expression of miRNA-5p/3p in colon cancer cells in a genome-wide analysis, and to examine cross-targeting of the dysregulated miRNAs and 5p/3p species.ResultsFour colon cancer cell lines were examined relative to two normal colon tissues. Of the 1,190 miRNAs analyzed, 92 and 36 were found to be up- or down-regulated, respectively, in cancer cells. Nineteen co-expressed miRNA-5p/3p pairs were further identified suggesting frequent 5p/3p co-accumulation in colon cancer cells. Of these, 14 pairs were co-up-regulated and 3 pairs were co-down-regulated indicating concerted 5p/3p dysregulation. Nine dysregulated miRNA pairs fell into three miRNA gene families, namely let-7, mir-8/200 and mir-17, which showed frequent cross-targeting in the metastasis process. Focusing on the let-7d-5p/3p pair, the respectively targeted IGF1R and KRAS were shown to be in a reverse relationship with expression of the respective miRNA, which was confirmed in transient transfection assays using let-7d mimic or inhibitor. Targeting of KRAS by let-7d was previous reported; targeting of IGF1R by let-7d-5p was confirmed in luciferase assays in this study. The findings of let-7d-5p/3p and multiple other miRNAs targeting IGF1R, KRAS and other metastasis-related factors suggest that 5p/3p miRNAs contribute to cross-targeting of multiple cancer-associated factors and processes possibly to evade functional abolishment when any one of the crucial factors are inactivated.ConclusionsmiRNA-5p/3p species are frequently co-expressed and are coordinately regulated in colon cancer cells. In cancer cells, multiple cross-targeting by the miRNAs, including the co-existing 5p/3p species, frequently occurs in an apparent safe-proof scheme of miRNA regulation of important tumorigenesis processes. Further systematic analysis of co-existing miRNA-5p/3p pairs in clinical tissues is important in elucidating 5p/3p contributions to cancer pathogenesis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12929-014-0095-x) contains supplementary material, which is available to authorized users.

Highlights

  • Two mature miRNA species may be generated from the 5’ and 3’ arms of a pre-miRNA precursor

  • The four colon cancer cell lines were found in two sub-clusters: sub-cluster 1 was represented by HT-29 and WiDr cells and sub-cluster 2 included HCT-15 and SK-CO-1 cells

  • We have identified 19 dysregulated 5p/3p pairs that are significantly co-expressed in colon cancer cells

Read more

Summary

Introduction

Two mature miRNA species may be generated from the 5’ and 3’ arms of a pre-miRNA precursor. Co-existence of miRNA-5p and -3p species is increasingly being reported. Recent reports have indicated that both the miRNA and miRNA* species often co-exist and both are functional [3,4,5,6,7]. The mature miRNA species may be derived from both the 5’ and 3’ arms of the precursor duplex, and are called the miRNA-5p and -3p species, respectively. These findings have introduced some degree of confusion in the miRNA nomenclature. The 5p/3p nomenclature is used, and the original miR-miR* names are listed alongside (see Additional file 1)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.