Abstract

BackgroundMicroRNAs (miRNAs) are critical regulators in osteogenesis and cartilage formation. This study was designed to investigate whether miR-532-5p plays a role in the regulation of osteoporosis.MethodsOsteoporotic fractures (OP group, n = 10) or osteoarthritis without osteoporosis (control group, n = 10) were selected as subjects in this study. Quantitative analysis of gene expression was performed by RT-PCR. Western blot was used to determine the expression levels of protein forkhead O1 (FOXO1). Bioinformatics analyses and luciferase reporter assay were used to verify the downstream target of miR-532-5p.ResultsCompared with the non-osteoporotic controls, miR-532-5p was upregulated in osteoporotic samples, and expression of miR-532-5p was downregulated in the osteogenic C2C12 cell model. Overexpression of miR-532-5p resulted in decreased expression levels of key osteoblast markers, including alkaline phosphatase (ALP), osteocalcin (OC), and collagen type I alpha 1 (COL1A1). The inhibitory results of miR-532-5p were reversed. MiR-532-5p contained a putative FOXO1 binding site. Moreover, miR-532-5p inhibited the expression of FOXO1, and overexpression of FOXO1 inhibited the effect of miR-532-5p on osteoblast markers.ConclusionsMiR-532-5p can provide references to osteoporosis by regulating the expression of FOXO1 and osteoblast differentiation. MiR-532-5p might serve as a therapeutic target for osteoporosis.

Highlights

  • MicroRNAs are critical regulators in osteogenesis and cartilage formation

  • MiR-532-5p was down-regulated during osteogenic differentiation As shown in Fig. 1a, compared with the control group, the expression levels of miR-532-5p were significantly increased in OP patients (P < 0.01), indicating that miR532-5p plays a part in the progression of osteoporosis

  • Effects of miR-532-5p on osteoblast differentiation in C2C12 cells As shown in Fig. 2a, compared with the control group, the expression levels of miR-532-5p were significantly higher in the miR-532-5p mimic group

Read more

Summary

Introduction

MicroRNAs (miRNAs) are critical regulators in osteogenesis and cartilage formation. This study was designed to investigate whether miR-532-5p plays a role in the regulation of osteoporosis. Recent studies have found that miRNAs play critical roles in various pathological processes in the body, including cell apoptosis, biological growth, virus defense, hematopoietic processes, glycolipid metabolism, and disease development [6, 7]. They regulate the proliferation of osteoporosis and gene expression in bone tissue development, and affect the formation and metabolism of bones [8].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call