Abstract
BackgroundBreast cancer is the most common cause of cancer-related death in women worldwide. MicroRNA (miRNA) ectopic expression has been reported to be involved in the regulation of gene expression in breast cancer. We screened several differentially expressed miRNAs associated with breast cancer chemoresistance, growth, and metastasis using a miRNA microarray. Increased expression of miR-4472 has been associated with larger breast tumors and chemoresistance. However, the biologic function of miR-4472 and its molecular mechanisms in cancer progression have not yet been reported. Materials and MethodsReal-time quantitative polymerase chain reaction was used to measure the expression of miR-4472 in breast cancer tissue and cell lines. The biologic functions of miR-4472 and its target gene were explored using Transwell, cell proliferation, and flow cytometry assays. Bioinformatics tools, dual-luciferase reporter assays, and Western blot were used to identify the target genes of miR-4472. Western blot was used to explain the participation of miR-4472 and target gene in epithelial-to-mesenchymal transition. ResultsmiR-4472 was significantly upregulated in highly metastatic breast cancer tissues, and its expression was positively associated with larger tumor size and advanced pTNM stage. miR-4472 promoted breast cancer cell metastasis and growth. Repulsive guidance molecule A (RGMA) was a direct target gene of miR-4472. RGMA was identified as a suppressor in cancer metastasis. miR-4472 downregulated expression of RGMA and promoted epithelial-to-mesenchymal transition by suppressing E-cadherin and initiating vimentin, β-catenin, and Slug. ConclusionsmiR-4472 contributes to the progression of breast cancer by regulating RGMA expression and inducing epithelial-to-mesenchymal transition, indicating that miR-4472/RGMA might serve as a therapeutic target for breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.