Abstract

BackgroundThymidylate synthase (TYMS) is an important folate-dependent enzyme in DNA synthesis and an important target for cancer chemotherapy. High TYMS expression levels in tumors are generally associated with resistance to 5-fluorouracil (5-FU). The cause of the variability in TYMS expression is still not fully understood, however, only a small proportion of the TYMS expression can be explained by TYMS genetic polymorphisms. The purpose of this study is to identify novel microRNAs (miRNAs) which regulate the expression of TYMS and to determine whether miRNAs binding to the 3′-untranslated region (UTR) of TYMS mRNA affect the proliferation of HeLa cells treated with 5-FU.MethodsAn in silico search was performed to find potential binding sites of miRNAs in TYMS mRNA. The efficacy of predicted miRNAs at the 3′-UTR of TYMS mRNA was evaluated using a dual-luciferase reporter assay. TYMS mRNA and protein expression in HeLa cells was quantified with real-time RT-PCR and Western blotting, respectively. The effects of miR-433 on cell proliferative activity were determined by WST-8 assay.ResultsThe overexpression of miR-433 was associated with significantly decreased reporter activity in the plasmid containing the 3′-UTR of TYMS mRNA (P < 0.01). The levels of TYMS mRNA and protein in HeLa cells were significantly decreased by the overexpression of miR-433 (P < 0.05). Furthermore, miR-433 increased inhibition of cell proliferation in HeLa cells treated with 5-FU at over 2.0 μM.ConclusionThe results indicate that miR-433 post-transcriptionally regulates the expression of TYMS mRNA and protein, and increases sensitivity to 5-FU in HeLa cells. This is the first report showing that a miRNA regulating TYMS expression has a significant impact on sensitivity to 5-FU treatment.

Highlights

  • Thymidylate synthase (TYMS) is an important folate-dependent enzyme in DNA synthesis and an important target for cancer chemotherapy

  • The 6-bp deletion in the TYMS 3′-untranslated region (UTR) is reported to decrease mRNA stability in vitro and gene expression in vivo [28]. These results suggest that certain miRNAs, which target sites proximal to the 6-bp deletion resulting in lower TYMS expression, exist

  • We identified a novel miRNA regulating the expression of TYMS and evaluated its effect on the proliferation of a human cervical cancer cell line exposed to 5-FU

Read more

Summary

Introduction

Thymidylate synthase (TYMS) is an important folate-dependent enzyme in DNA synthesis and an important target for cancer chemotherapy. High TYMS expression levels in tumors are generally associated with resistance to 5-fluorouracil (5-FU). Thymidylate synthase (TYMS) is an intracellular enzyme critical for de novo synthesis of thymidine monophosphate (dTMP), a precursor of the DNA metabolite thymidine triphosphate. Inhibition of TYMS suppresses cellular growth and leads to cell death. Due to this critical function, TYMS has been a major target of anti-cancer drugs for the past 50 years [1]. Higher TYMS levels in tumor tissues in cancer patients were associated with resistance to 5-FU-based chemotherapy [4,5,6,7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call