Abstract

Accumulating evidence suggests that lymphangiogenesis plays a crucial role in lymphatic metastasis, leading to tumor immune tolerance. However, the specific mechanism remains unclear. In this study, miR-431-5p was markedly downregulated in both gastric cancer(GC) tissues and plasma exosomes, and its expression were correlated negatively with LN metastasis and poor prognosis. Mechanistically, miR-431-5p weakens the TGF-β1/SMAD2/3signaling pathway by targeting ZEB1, thereby suppressing the secretion of VEGF-A and ANG2, which in turn hinders angiogenesis, lymphangiogenesis, andlymph node(LN) metastasis in GC. Experiments using a popliteal LN metastasis model in BALB/c nude mice demonstrated that miR-431-5p significantly reduced popliteal LN metastasis. Additionally, miR-431-5p enhances the efficacy of anti-PD1 treatment, particularly when combined with galunisertib, anti-PD1 treatment showing a synergistic effect in inhibiting GC progression in C57BL/6 mice. Collectively, these findings suggest that miR-431-5p may modulate the TGF-β1/SMAD2/3 pathways by targeting ZEB1 to impede GC progression, angiogenesis, and lymphangiogenesis, making it a promising therapeutic target for GC management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call