Abstract
Emerging evidence has suggested that aberrantly expressed microRNAs (miRNAs) are associated with glioma development and progression. The aberrant expression of miR-409-3p has been reported in several human cancers. However, little is known about the function of miR-409-3p in gliomas. The aim of this study was to investigate the specific role and molecular mechanism of miR-409-3p in gliomas. In the present study, we found that miR-409-3p was downregulated in glioma tissue and cell lines. Overexpression of miR-409-3p inhibited glioma cell invasion and proliferation, whereas suppression of miR-409-3p promoted glioma cell invasion and proliferation. High-mobility group nucleosome-binding domain 5 (HMGN5), a well-known oncogene in gliomas, was identified as a functional target of miR-409-3p using bioinformatics, dual-luciferase reporter assay, real-time quantitative polymerase chain reaction, and Western blot analysis. Furthermore, miR-409-3p was found to regulate the expression of matrix metalloproteinase 2 and cyclin D1. Restoration of HMGN5 expression significantly reversed the inhibitory effects of miR-409-3p overexpression on glioma cell invasion and proliferation. Taken together, our results suggest that miR-409-3p inhibits glioma cell invasion and proliferation by targeting HMGN5, representing a potential therapeutic target for glioma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.