Abstract

PurposeMore recently, literature has emerged providing findings about the novelty of microRNAs (miR)-targeted therapeutics in the treatment of retinoblastoma (RB). The prime objective of this study was to identify the potential role of miR-378a-3p and its regulation in RB cells via forkhead box G1 (FOXG1).MethodsThe expression of miR-378a-3p and FOXG1 in the clinical RB tissues was determined using RNA quantitation and Western blot assays. The interaction between miR-378a-3p and FOXG1 was identified using dual luciferase reporter gene assay. The potential effects of miR-378a-3p on the RB cell biological processes were evaluated by conducting gain- and loss-of-function studies of miR-378a-3p and FOXG1, followed by cell viability, cell cycle progression, and apoptosis measurements. Furthermore, experiments were performed in nude mice to assess its effects on tumor formation.ResultsmiR-378a-3p was poorly expressed, whereas FOXG1 was highly expressed in RB tissues and cells. miR-378a-3p bound to the FOXG1 3′ untranslated region and negatively modulated its expression. The overexpression of miR-378a-3p was found to decrease RB cell viability and to promote cell apoptosis in vitro, whereas overexpressed FOXG1 reversed the regulatory effects of miR-378a-3p on RB cellular behaviors. In nude mice, the restoration of miR-378a-3p by miR-378a-3p agomir was shown to play a role in the reduction of tumor volume and size relative to nude mice injected with negative control-agomir.ConclusionsOur findings identified that increased miR-378a-3p exerted an inhibitory effect on RB cell proliferation by targeting FOXG1, suggesting the role of miR-378a-3p as a novel therapeutic target for RB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call