Abstract

Certain microRNAs (miRs) regulate the progression and metastasis of various cancer types. In the present study, the role of miR-370 in the progression and proliferation of human astrocytoma and glioblastoma cells was assessed and the underlying molecular mechanism was investigated. miR-370 levels in clinical specimens of human glioma and peritumoral tissues were determined by reverse-transcription quantitative PCR. Oligonucleotide mimics and inhibitors were transfected into the U-251MG human astrocytoma cell line and the and U-87MG glioblastoma cell line and the cell viability of was determined by an MTT assay. The expression of β-catenin and forkhead box protein (FOX)O3a was determined by western blot analysis. The results revealed that the expression of miR-370 in human glioma tissues was significantly decreased compared with that in peritumoral tissues. The miR-370 levels in patients with grade III/IV gliomas were significantly decreased compared with those in grade I/II. Transfection with miR-370 mimics inhibited the proliferation of U-251MG and U-87MG cells. Furthermore, the miR-370 levels were negatively correlated with β-catenin and positively correlated with nuclear FOXO3a. In conclusion, miR-370 inhibited the proliferation of human glioma cells by regulating the levels of β-catenin and the activation of FOXO3a, suggesting that miR-370 was a tumor suppressor in the progression of human astrocytoma and glioblastoma cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call