Abstract

BackgroundMorphine is widely used in clinical practice for a class of analgesic drugs, long-term use of morphine will cause the action of tolerance. MicroRNAs have been reported to be involved in morphine analgesic tolerance..MethodsForty male SD rats were selected and randomly divided into 5 groups: the control group, morphine tolerance group, miR-365 mimic + morphine (miR-365 mimic) group, miR-365 inhibitor + morphine (miR-365 inhibitor) group and miR-365 negative control (NC) + morphine (miR-365 NC) group. After the administration of morphine at 0 d, 1 d, 3 d, 5 d and 7 d, behavioral testing was performed. A dual luciferase reporter gene assay was performed to confirm the relationship between miR-365 and β-arrestin2, RT-qPCR was used to detect miR-365, β-arrestin2, ERK and CREB mRNA expressions, western blotting was used to evaluate the protein expressions of β-arrestin2, ERK, p-ERK, CREB and p-CREB, ELISA was used to detect the contents of IL-1β, TNF-α and IL-18, while immunofluorescence staining was used to measure the GFAP expression. Intrathecal injection of mir365 significantly increased the maximal possible analgesic effect (%MPE) in morphine tolerant rats. β-arrestin2 was the target gene of miR-365.ResultsThe results obtained showed that when compared with the morphine tolerance group, there was an increase in miR-365 expression and a decrease in the β-arrestin2, ERK, CREB protein expressions, contents of IL-1β, TNF-α, IL-18 and GFAP expression in the miR-365 mimic group, while the miR-365 inhibitor group displayed an opposite trend.ConclusionsThe results of this experiment suggest that by targeting β-arrestin2 to reduce the contents of IL-1β, TNF-α and IL-18 and by inhibiting the activation of ERK/CREB signaling pathway, miR-365 could lower morphine analgesic tolerance.

Highlights

  • Morphine is widely used in clinical practice for a class of analgesic drugs, long-term use of morphine will cause the action of tolerance

  • Compared to the morphine tolerance group, the %MPE showed no difference in the miR-365 negative control (NC) group (P > 0.05)

  • The collective results showed strong evidence that miR-365 could relieve the development of morphine analgesic tolerance to some degree by targeting β-arrestin2 through reducing the content of IL-1β, TNF-α and IL-18 and inhibiting the activation of astrocyte and the extracellular signal-regulated kinase (ERK)/cAMP-response element binding protein (CREB) signaling pathway

Read more

Summary

Introduction

Morphine is widely used in clinical practice for a class of analgesic drugs, long-term use of morphine will cause the action of tolerance. MicroRNAs have been reported to be involved in morphine analgesic tolerance. Its characterization plays a significant role in the diagnosis and choice of treatment and selection of analgesics and titration of the dose are guided by the clinical effects [1]. Morphine is a highly potent analgesic that provides effective pain relief. Prolonged or repetitive use of morphine leads to decreased potency of analgesic effect. Even the MicroRNAs are single-stranded non-protein-coding RNA transcripts used to regulate gene expression. As an onco-miR, miR-365 is highly expressed in both cells and

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.