Abstract

ABSTRACT MiR-34a is associated with diabetic retinopathy (DR). This article aims to demystify the role of miR-34a in DR. We established a DR model by streptozocin injection. Rat retinal vascular endothelial cells (RVECs) were treated with high glucose (HG) to induce DR. The pathological changes of retinal tissues and blood-retinal vascular barrier permeability of DR rats were assessed by HE staining and Evans-Blue leak test. The expression of gene and protein was evaluated by quantitative real-time PCR or western blot. MTT assay and flow cytometry were performed to detect proliferation and apoptosis. The relationship between miR-34a and SIRT1 was evaluated using luciferase reporter assay. MiR-34a was up-regulated and SIRT1 was down-regulated in retinal tissues of DR rats and HG-induced RVECs. MiR-34a silencing improved DR by regulating apoptosis and VEGF expression in DR rats. Furthermore, miR-34a interacted with SIRT1 and suppressed SIRT1 expression. MiR-34a overexpression inhibited proliferation and promoted apoptosis of RVECs, which was effectively abolished by SIRT1 up-regulation. In summary, our data demonstrate that miR-34a promotes apoptosis of RVECs by targeting SIRT1 in DR rats. Our findings suggest that miR-34a/SIRT1 axis could be a valuable target for DR therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call