Abstract

BackgroundChoriocarcinoma is a gestational trophoblastic tumor which causes high mortality if left untreated. MicroRNAs (miRNAs) are small non protein-coding RNAs which inhibit target gene expression. The role of miRNAs in choriocarcinoma, however, is not well understood. In this study, we examined the effect of miR-34a in choriocarcinoma.MethodsMiR-34a was either inhibited or ectopically expressed transiently in two choriocarcinoma cell lines (BeWo and JEG-3) respectively. Its actions on cell invasion, proliferation and colony formation at low cell density were examined. The miR-34a putative target Notch ligand Delta-like 1 (DLL1) was identified by adoption of different approaches including: in-silico analysis, functional luciferase assay and western blotting. Real-time quantitative polymerase chain reaction was used to quantify changes in the expression of matrix proteinase in the treated cells. To nullify the effect of miR-34a ectopic expression, we activated Notch signaling through force-expression of the Notch intracellular domain in the miR-34a force-expressed cells. In addition, we studied the importance of DLL1 in BeWo cell invasion through ligand stimulation and antibody inhibition. Furthermore, the induction in tumor formation of miR-34a-inhibited BeWo cells in SCID mice was investigated.ResultsTransient miR-34a force-expression significantly suppressed cell proliferation and invasion in BeWo and JEG-3 cells. In silicon miRNA target prediction, luciferase functional assays and Western blotting analysis demonstrated that miR-34a regulated DLL1 expression in both cell lines. Although force-expression of miR-34a suppressed the expression of DLL1 and NOTCH1, the extent of suppression was higher in DLL1 than NOTCH1 in both cell lines. MiR-34a-mediated DLL1 suppression led to reduced matrix metallopeptidase 9 and urokinase-type plasminogen activator expression. The effect of miR-34a on cell invasion was partially nullified by Notch signaling activation. DLL1 ligand stimulated while anti-DLL1 antibody treatment suppressed cell invasion. Mice inoculated with BeWo cells transfected with miR-34a inhibitor had significantly larger xenografts and stronger DLL1 expression than those with cells transfected with the control inhibitor.ConclusionsMiR-34a reduced cell proliferation and invasiveness, at least, partially through its inhibitory effect on DLL1.

Highlights

  • Choriocarcinoma is a gestational trophoblastic tumor which causes high mortality if left untreated

  • MiR-34a reduces proliferation and invasion of choriocarcinoma cell lines We first studied the biological effect of miR-34a in two choriocarcinoma cell lines BeWo and JEG-3 through transfection of pre-miR-34a

  • It was found that the invasiveness of the miR-34a force-expressed choriocarcinoma cells was significantly decreased when compared with the control group (Figure 1C)

Read more

Summary

Introduction

Choriocarcinoma is a gestational trophoblastic tumor which causes high mortality if left untreated. Choriocarcinoma is a highly malignant trophoblastic tumor characterized by abnormal trophoblastic hyperplasia and anaplasia. It can be derived either from a normal or pathological pregnancy like molar pregnancies, induced/spontaneous abortions, ectopic pregnancies and preterm deliveries [1]. Choriocarcinoma is a rare disease, if left untreated, can spread rapidly and has a mortality rate of nearly 100% [2]. Heterogeneous causes of the disease make study of the disease much more complicated; cytogenetic analyses indicate that most chromosomes can be affected and no consistent abnormality has been identified in choriocarcinoma [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call