Abstract

MicroRNA-328 (miR-328) was reported to protect against atherosclerosis, but its role in foam cell formation remains unknown. The aim of this study was to investigate the effect of miR-328-5p on macrophage lipid accumulation and the underlying mechanisms. The results showed that miR-328-5p expression was robustly decreased in oxidized low-density lipoprotein (ox-LDL)-treated macrophages. Treatment of human acute monocytic leukemia cel (THP-1) macrophage-derived foam cells with a miR-328-5p mimic markedly increased [3 H]-cholesterol efflux, inhibited lipid droplet accumulation, and decreased intracellular total cholesterol (TC), free cholesterol (FC) and cholesteryl ester (CE) contents. Upregulation of miR-328-5p also reduced the expression of histone deacetylase 3 (HDAC3) but increased the levels of ATP-binding cassette transporter A1 (ABCA1) in THP-1 macrophage-derived foam cells. Mechanistically, miR-328-5p inhibited HDAC3 expression by directly targeting its 3'UTR, thereby promoting ABCA1 expression and the subsequent cholesterol efflux. Furthermore, miR-328-5p mimic treatment did not affect the uptake of Dil-ox-LDL or the expression of scavenger receptor-A (SR-A), thrombospondin receptor (CD36) and ABCG1. Taken together, these findings suggest that miR-328-5p alleviates macrophage lipid accumulation through the HDAC3/ABCA1 pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call