Abstract

Matrix metalloproteinase 2 (MMP2) is a potent protumorigenic, proangiogenic, and prometastatic enzyme that is overexpressed in metastatic cancer. Although there have been various studies on the MMP2 gene, further studies of regulatory factors are required to achieve inhibition of MMP2 enzyme activities. MicroRNAs (miRNAs) play key roles in tumor metastasis. However, the specific functions of miRNAs in metastasis are unclear. In this study, we assessed the function of the microRNA-29 family (miR-29s) in HT1080 human fibrosarcoma cells and examined the regulatory mechanisms of these miRNAs on MMP2 activation. Using miRanda, TargetScan, and PicTar databases, miR-29s were identified as candidate miRNAs targeting MMP2. Gain-of-function studies showed that overexpression of miR-29s could inhibit the invasion of HT1080 cells, suggesting their tumor-suppressive roles in HT1080 cells. In addition, dual luciferase reporter assays indicated that miR-29s could inhibit the expression of the luciferase gene containing the 3'-untranslated region of MMP2 mRNA. Ectopic expression of miR-29s down-regulated the expression of MMP2. Moreover, ectopic expression of miR-29s reduced MMP2 enzyme activity. These results suggested that miR-29s could decrease the invasiveness of HT1080 cells by modulating MMP2 signaling. Taken together, our results demonstrated that miR-29s may serve as therapeutic targets to control tumor metastasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call