Abstract
BackgroundJuvenile Idiopathic Arthritis (JIA) is the most prevalent chronic pediatric rheumatic disorder. In joints of JIA patients, aggressive phenotypic changes in fibroblast-like synoviocytes (FLS) of the synovial lining play a key role in inflammation. MicroRNAs are dysregulated in rheumatoid arthritis and JIA, including miR-27a-3p. However, it is not understood if miR-27a-3p, enriched in JIA synovial fluid (SF) and leukocytes, alters FLS function.MethodsPrimary JIA FLS cells were transfected with a miR-27a-3p mimic or a negative control microRNA (miR-NC) and stimulated with pooled JIA SF or inflammatory cytokines. Viability and apoptosis were analyzed by flow cytometry. Proliferation was evaluated using a 3H-thymidine incorporation assay. Cytokine production was assessed by qPCR and ELISA. Expression of TGF-β pathway genes was determined using a qPCR array.ResultsMiR-27a-3p was constitutively expressed in FLS. Overexpression of miR-27a-3p caused increased interleukin-8 secretion in resting FLS, and interleukin-6 was elevated in SF-activated FLS compared to miR-NC. Furthermore, stimulation with pro-inflammatory cytokines augmented FLS proliferation in miR-27a-3p-transfected FLS relative to miR-NC. Expression of multiple TGF-β pathway genes was modulated by overexpression of miR-27a-3p.ConclusionsMiR-27a-3p significantly contributes to FLS proliferation and cytokine production, making it a potential candidate for epigenetic therapy that targets FLS in arthritis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.