Abstract

The yellow fever mosquito Aedes aegypti is the major vector of arboviruses, causing numerous devastating human diseases, such as dengue and yellow fevers, Chikungunya and Zika. Female mosquitoes need vertebrate blood for egg development, and repeated cycles of blood feeding are tightly linked to pathogen transmission. The mosquito’s posterior midgut (gut) is involved in blood digestion and also serves as an entry point for pathogens. Thus, the mosquito gut is an important tissue to investigate. The miRNA aae-miR-275 (miR-275) has been shown to be required for normal blood digestion in the female mosquito; however, the mechanism of its action has remained unknown. Here, we demonstrate that miR-275 directly targets and positively regulates sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase, which is implicated in active transport of Ca2+ from the cytosol to the sarco/endoplasmic reticulum. We utilized a combination of the gut-specific yeast transcription activator protein Gal4/upstream activating sequence (Gal4/UAS) system and miRNA Tough Decoy technology to deplete the endogenous level of miR-275 in guts of transgenic mosquitoes. This gut-specific reduction of miR-275 post blood meal decreased SERCA mRNA and protein levels of the digestive enzyme late trypsin. It also resulted in a significant reduction of gut microbiota. Moreover, the decrease of miR-275 and SERCA correlated with defects in the Notch signaling pathway and assembly of the gut actin cytoskeleton. The adverse phenotypes caused by miR-275 silencing were rescued by injections of miR-275 mimic. Thus, we have discovered that miR-275 directly targets SERCA, and the maintenance of its level is critical for multiple gut functions in mosquitoes.

Highlights

  • Female hematophagous mosquitoes require vertebrate blood to support rapid egg development

  • We investigated the target of miR-275 contributing to the regulation of mosquito gut functions

  • We have uncovered that miR-275 targets sarco/endoplasmic reticulum Ca2+- adenosine triphosphatase (SERCA), affecting numerous gut functions including blood digestion, production of digestive proteases, and assembly of the gut actin cytoskeleton

Read more

Summary

Introduction

Female hematophagous mosquitoes require vertebrate blood to support rapid egg development. Understanding the regulatory mechanisms governing gut functioning in the process of blood utilization is critical for elucidating interactions between pathogens and their mosquito hosts. Recent studies have implicated blood feeding in initiating global changes in the mosquito transcriptome; these changes are not limited to protein-coding mRNAs, and to a large number of non-coding RNAs [1, 2]. MicroRNAs (miRNAs) are small non-coding RNA molecules of ~21 nucleotides in length that play significant roles in post-transcriptional regulation by forming hybrids with sequences located in the coding region or 3’ UTRs of target mRNAs [3]. Recent studies have revealed that miRNAs play an important role in diverse biological functions in mosquitoes, such as blood digestion, reproduction, Plasmodium invasion, viral immunity and Wolbachia infection [8]

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.