Abstract

Diabetic foot ulcer (DFU), a serious complication of diabetes, remains a clinical challenge. MicroRNAs affect inflammation and may have therapeutic value in DFU. Here, we find that an miR-221-3p mimic reduces the inflammatory response and increases skin wound healing rates in a mouse model of diabetes, whereas miR-221-3p knockout produced the opposite result. In human keratinocytes cells, miR-221-3p suppresses the inflammatory response induced by high glucose. The gene encoding DYRK1A is a target of miR-221-3p. High glucose increases the expression of DYRK1A, but silencing DYRK1A expression decreases high glucose–induced inflammatory cytokine release via dephosphorylation of STAT3, a substrate of DYRK1A. Application of miR-221-3p mimic to human keratinocytes cells not only decreases DYRK1A expression but also inhibits high glucose–induced production of inflammatory cytokines to promote wound healing. This molecular mechanism whereby miR-221-3p regulates inflammation through the DYRK1A/STAT3 signaling pathway suggests targets and therapeutic approaches for treating DFU.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call