Abstract

MDC1 is critical component of the DNA damage response (DDR) machinery and orchestrates the ensuring assembly of the DDR protein at the DNA damage sites, and therefore loss of MDC1 results in genomic instability and tumorigenicity. However, the molecular mechanisms controlling MDC1 expression are currently unknown. Here, we show that miR-22 inhibits MDC1 translation via direct binding to its 3' untranslated region, leading to impaired DNA damage repair and genomic instability. We demonstrated that activated Akt1 and senescence hinder DDR function of MDC1 by upregulating endogenous miR-22. After overexpression of constitutively active Akt1, homologous recombination was inhibited by miR-22-mediated MDC1 repression. In addition, during replicative senescence and stress-induced premature senescence, MDC1 was downregulated by upregulating miR-22 and thereby accumulating DNA damage. Our results demonstrate a central role of miR-22 in the physiologic regulation of MDC1-dependent DDR and suggest a molecular mechanism for how aberrant Akt1 activation and senescence lead to increased genomic instability, fostering an environment that promotes tumorigenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.