Abstract

BackgroundEpithelial ovarian cancer (EOC) is the most common cause of gynecological malignancy-related mortality. Ovarian clear cell carcinoma (CCC) has unique clinical characteristics and behaviors that differ from other histological types of EOC, including a frequent association with endometriosis and a highly chemoresistant nature, resulting in poor prognosis. However, factors underlying its malignant behavior are still poorly understood. Aberrant expression of microRNAs has been shown to be involved in oncogenesis, and microRNA-21 (miR-21) is frequently overexpressed in many types of cancers. The aim of this study was to investigate the role of miR-21 in 17q23-25 amplification associated with CCC oncogenesis.MethodsWe identified 17q23-25 copy number aberrations among 28 primary CCC tumors by using a comparative genomic hybridization method. Next, we measured expression levels of the candidate target genes, miR-21 and PPM1D, for 17q23-25 amplification by real-time RT-PCR analysis and compared those data with copy number status and clinicopathological features. In addition, immunohistochemical analysis of PTEN (a potential target of miR-21) was performed using the same primary CCC cases. We investigated the biological significance of miR-21 overexpression in CCC using a loss-of-function antisense approach.Results17q23-25 amplification with both miR-21 overexpression and PTEN protein loss was detected in 4/28 CCC cases (14.2%). The patients with 17q23-25 amplification had significantly shorter progression-free and overall survival than those without 17q23-25 amplification (log-rank test: p = 0.0496; p = 0.0469, respectively). A significant correlation was observed between miR-21 overexpression and endometriosis. Both PTEN mRNA and PTEN protein expression were increased by miR-21 knockdown in CCC cells. We also confirmed that miR-21 directly bound to the 3′-untranslated region of PTEN mRNA using a dual-luciferase reporter assay.ConclusionsMiR-21 is a possible driver gene other than PPM1D for 17q23-25 amplification in CCC. Aberrant expression of miR-21 by chromosomal amplification might play an important role in CCC carcinogenesis through the regulation of the PTEN tumor suppressor gene.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2407-14-799) contains supplementary material, which is available to authorized users.

Highlights

  • Epithelial ovarian cancer (EOC) is the most common cause of gynecological malignancy-related mortality

  • We evaluated the relationship between 17q23-25 amplification and either miR-21 or PPM1D overexpression

  • No significant correlation was observed between miR-21 overexpression and loss of PTEN expression

Read more

Summary

Introduction

Epithelial ovarian cancer (EOC) is the most common cause of gynecological malignancy-related mortality. Ovarian clear cell carcinoma (CCC) has unique clinical characteristics and behaviors that differ from other histological types of EOC, including a frequent association with endometriosis and a highly chemoresistant nature, resulting in poor prognosis. Epithelial ovarian cancer (EOC), a heterogeneous group of neoplastic diseases that arise from the epithelial cells of fallopian tubes, ovarian fimbria, ovarian surface epithelium, inclusion cysts, peritoneal mesothelium, or endometriosis, is the most lethal gynecologic malignancy developing deep venous thrombosis. The incidence of venous thromboembolic events was found to be significantly higher in CCC than in other epithelial ovarian cancers [4,5]. CCC is generally refractory to standard platinum agent-based chemotherapy with a response rate of only 11–15%; this type of tumor typically has a poor prognosis, in late stages. Identifying novel therapeutic targets and establishing new treatment strategies for CCC is important

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call