Abstract

Neural stem cells (NSCs) persist in the mammalian brain throughout life and protect against hypoxia-ischemia injury. NSCs are being increasingly recognized as a novel therapeutic target for various neurological disorders. Previous research indicates that miR-21 attenuates hypoxia-ischemia induced apoptotic death in various cell types. However, whether miR-21 plays a role in this protective effect mediated by NSCs is unknown, particularly in human NSCs (hNSCs). The present study investigated whether miR-21 could prevent hNSC injury induced by oxygen and glucose deprivation (OGD). Upon challenge with OGD treatment, loss of cell viability was observed in cultured hNSCs, as shown by CCK-8 assay. Moreover, quantitative real-time PCR (qRT-PCR) analysis indicated that expression of miR-21 increased in a time-dependent manner. TUNEL staining and Western blotting analysis showed that overexpression of miR-21 inhibited excessive hNSCs death induced by OGD treatment. Accordingly, knock down of miR-21 attenuated the neuroprotective effect observed in response to OGD treatment. Furthermore, JNK and p38 MAPKs inhibition was observed after overexpression of miR-21, and knock down of miR-21 had the opposite effect. We suggest that miR-21 prevents OGD-induced hNSCs death and apoptotic-associated protein activities through inhibiting JNK and p38 pathways in cultured hNSCs. Our findings may help to develop strategies for enhancing resident and transplanted NSCs survival after hypoxia-ischemic brain damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.