Abstract

PurposeAs a common complication of tendon injury, tendon adhesion is an unresolved problem in clinical work. The aim of this study was to investigate whether human umbilical cord mesenchymal stem cell-derived exosomes (HUMSC-Exos), one of the most promising new-generation cell-free therapeutic agents, can improve tendon adhesion and explore potential-related mechanisms.MethodsThe rat Achilles tendon injury adhesion model was constructed in vivo, and the localization of HUMSC-Exos was used to evaluate the tendon adhesion. Rat fibroblast cell lines were treated with transforming growth factor β1 (TGF-β1) and/or HUMSC-Exos in vitro, and cell proliferation, apoptosis and gene expression were measured. MicroRNA (miRNA) sequencing and quantitative PCR (qPCR) analysis confirmed differential miRNAs. A specific miRNA antagonist (antagomir-21a-5p) was used to transform HUMSC-Exos and obtain modified exosomes to verify its efficacy and related mechanism of action.ResultsIn this study, we found HUMSC-Exos reduced rat fibroblast proliferation and inhibited the expression of fibrosis genes: collagen III (COL III) and α-smooth muscle actin (α-SMA) in vitro. In the rat tendon adhesion model, topical application of HUMSC-Exos contributed to relief of tendon adhesion. Specifically, the fibrosis and inflammation-related genes were simultaneously inhibited by HUMSC-Exos. Further, miRNA sequencing of HUMSCs and HUMSC-Exos showed that miR-21a-3p was expressed at low abundance in HUMSC-Exos. The antagonist targeting miR-21a-3p was recruited for treatment of HUMSCs, and harvested HUMSC-Exos, which expressed low levels of miR-21a-3p, and expanded the inhibition of tendon adhesion in subsequent in vitro experiments.ConclusionOur results indicate that HUMSC-Exos may manipulate p65 activity by delivering low-abundance miR-21a-3p, ultimately inhibiting tendon adhesion. The findings may be promising for dealing with tendon adhesion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.