Abstract
Diabetic cataract (DC) is a major cause of blindness in diabetic patients and it is characterized by early onset and rapid progression. MiR-204-5p was previously identified as one of the top five down-regulated miRNAs in human DC lens tissues. We aimed to determine the expression of miR-204-5p in human lens epithelial cells (HLECs) and explore its effects and mechanisms in regulating the progression of DC. The expression of miR-204-5p in the anterior capsules of DC patients and HLECs was examined by RT-qPCR. Bioinformatics tools were then used to identify the potential target of miR-204-5p. The relationship between miR-204-5p and the target gene was confirmed through a dual luciferase reporter assay. Additionally, the regulatory mechanism of oxidative stress, apoptosis, and inflammation in DC was investigated by overexpressing miR-204-5p using miR-204-5p agomir. The expression of miR-204-5p was downregulated in the anterior capsules of DC patients and HLECs. Overexpression of miR-204-5p reduced ROS levels, pro-apoptosis genes (Bid, Bax, caspase-3), and IL-1β production in HG-treated HLECs. TXNIP was the direct target of miR-204-5p by dual luciferase reporter assay. Therefore, this study demonstrated that miR-204-5p effectively reduced oxidative damage, apoptosis, and inflammation in HLECs under HG conditions by targeting TXNIP. Targeting miR-204-5p could be a promising therapeutic strategy for the potential treatment of DC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.