Abstract

Ischemia-reperfusion injury (IRI) is a severe problempatients diagnosed with acute limb ischemia. Recently, microRNAs (miR) have emerged as regulators of IRI as well as ischemic preconditioning and ischemic postconditioning. Therefore, usingrat models, this study aims to explore all of the possible mechanisms that miR-19 exhibits with its relation to the transforming growth factor beta (TGF-β1)/Smad signaling pathway in the lower limb IRI. An immunofluorescence staining method was used to identify the Krueppel-like factor 10 (KLF10) positive expression and the location of KLF10 expression. The targeting relationship that miR-19 has with KLF10 was verified by the dual-luciferase reporter gene assay. Vascular endothelial cells (VECs) were treated with elevated or suppressed miR-19 or KLF10 knockdown. A 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay was used to test cell proliferation, and flow cytometry was employedto detect bothcell cycle and apoptosis. The KLF10-positive expression in the VECs (both in cytoplasm and nucleus) was found tobe elevated in the IRI rats. We found that miR-19 was downregulated, KLF10 upregulated, and the TGF-β1/Smad signaling pathway activated in the vascular epithelial tissues of IRI rats. KLF10 is a target gene of miR-19. Overexpression of miR-19 decreased the expression of KLF10, TGF-β1, and Smad2/3. Decreased miR-19 inhibited VEC proliferation, arrested VECs at the G1 phase, and promoted the apoptosis of VECs following their lower limb I/R injury. These results indicate miR-19 as being an inhibitor in the VEC injury of IRI via the TGF-β1/Smad signaling pathway by suppression of KLF10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.