7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1093/jnen/nlac024
Copy DOIPublication Date: Jun 20, 2022 | |
Citations: 6 |
This study investigated mechanisms by which microRNA (miR)-181a orchestrates mitochondrial dysfunction and inflammation in a rat model of intensive care unit-acquired weakness (ICU-AW). Expression of miR-181a and insulin-like growth factor binding protein 5 (IGFBP5) was detected and then miR-181a was overexpressed or inhibited and IGFBP5 was overexpressed in the ICU-AW rats. The expression of UCP-3, metaphase chromosome protein 1 (MCP1), mitochondrial DNA (mtDNA), inflammatory factors, phosphorylation (p)-JAK1, p-STAT1, and p-STAT2 were measured in skeletal muscle tissues; binding of miR-181a to IGFBP5 was evaluated by a dual-luciferase reporter assay. The results demonstrated high expression of miR-181a and low expression of IGFBP5 in ICU-AW versus control rats; IGFBP5was identified as a target gene of miR-181a. Further experiments demonstrated that ICU-AW rats suffered from marked loss of grip strength and decreased adenosine triphosphate production, mtDNA content, and UCP-3 mRNA expression in skeletal muscles; this was accompanied by elevated TNF-α, IL-6, IL-1β, MCP1, p-JAK1, p-STAT1, and p-STAT2 levels. Importantly, miR-181a suppression alleviated strength loss, inflammatory reaction, and mitochondrial dysfunction and diminished the phosphorylation levels of JAK1, STAT1, and STAT2 whereas IGFBP5 upregulation rescued the effect of miR-181a overexpression in ICU-AW rats. These results indicate that miR-181a promotes mitochondrial dysfunction and inflammation by activating the JAK/STAT pathway via IGFBP5 in ICU-AW model rats.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.