Abstract

Progressive renal fibrosis is a common complication of chronic kidney disease that results in end‑stage renal disorder. It is well established that several microRNAs (miRs) function as critical regulators implicated in fibrotic diseases. However, the role of miR‑181 in the development and progression of renal fibrosis remains unclear, and the precise mechanism has not yet been fully defined. The present study identified the functional implications of miR‑181 expression during renal fibrosis. miR‑181 exhibited significantly reduced expression in the serum of renal fibrosis patients and in the kidneys of mice with unilateral ureteral obstruction (UUO). In addition, miR‑181 downregulated the expression of human α‑smooth muscle actin (α‑SMA) in response to angiotensin II stimulation. Transfection with miR‑181 mimics significantly suppressed the expression levels of α‑SMA, connective tissue growth factor, collagen type I α1 (COL1A1) and collagen type III α1 (COL3A1) in NRK49F cells. Notably, early growth response factor‑1 (Egr1) was identified as a direct target gene of miR‑181. Furthermore, invivo experiments revealed that treatment with miR‑181 agonist strongly rescued kidney impairment induced by UUO, as supported by Masson's trichrome staining of kidney tissues and reverse transcription‑quantitative polymerase chain reaction analysis of COL1A1 and COL3A1 mRNA levels. Therefore, miR‑181 may be regarded as an important mediator in the control of profibrotic markers during renal fibrosis via binding to Egr1, and may be a promising new target in the diagnosis and therapy of renal fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.