Abstract

Accumulating evidence have indicated that MicroRNAs (miRNAs) are key regulators in human rheumatoid arthritis (RA). The aim of this study was to explore the functional roles of miR-16-5p in proliferation, inflammation, and apoptosis of fibroblast-like synoviocytes (FLS). The expression of miR-16-5p and SOCS6 in FLA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter assay was used to verify the direct target of miR-16-5p. Western blot analysis was performed to analysis the levels of SOCS6, Bcl-2, Bax and cleaved caspase 3. miR-16-5p expression was significantly upregulated while SOCS6 level was decreased in RA-FLS compared with normal FLS. In addition, luciferase reporter assay confirmed that SOCS6 was the target of miR-16-5p. Silencing of miR-16-5p inhibited cell proliferation, releases of TNF-α, IL-1β, IL-6 and IL-8, and induced the apoptosis. The effects of miR-16-5p silencing on RA-FLS were reversed by downregulation of SOCS6. In summary, knockdown of miR-16-5p could suppress cell proliferation and accelerate the apoptosis of RA-FLS through targeting SOCS6, which may provide a potential therapeutic target for patients with RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.