Abstract

Diabetes leads to amputation in approximately 15% to 20% of patients and is associated with high morbidity and mortality. Thus, improving the quality of wound healing in this condition is essential. Diabetes is associated with acute/chronic inflammation affecting all organs especially the foot, while, inhibition of microRNA-155 (miR-155) has been reported to improve or reduce inflammatory situation. However, the role of miR-155 inhibition in promoting diabetic wound healing is not clear. To further study the potential benefit of miR-155 inhibition, a study of male Sprague-Dawley rats was conducted and diabetes was induced by injection of streptozotocin. Real-time polymerase chain reaction (PCR), hematoxylin and eosin staining and immunohistochemistry were then performed. The PCR results confirmed that miR-155 expression was lower after miR-155 inhibition on days 3, 7, and 13 (all Ps <.05). The wound healing rate between the normal glucose group (N group), diabetic PBS group (PBS group) and the topical miR-155 inhibitor group was compared. Faster healing of cutaneous wounds was observed in the miR-155 inhibitor group than in the PBS group and normal glucose group ( P < .05). In addition, downregulation of inflammatory cells, including neutrophils (MPO-positive) and macrophages (CD68-positive), and upregulation of the angiogenic protein CD31 and markers indicative of fibroblast proliferation and collagen deposition, such as collagen 1, TGF-β1, and α-SMA, were observed. These data permit the observation that miR-155 inhibition possesses the potential to reduce inflammation in acute wounds. This property may benefit the healing of diabetic foot wounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call