Abstract

Background MicroRNAs (miRNAs) contribute to tumorigenesis by acting as either oncogenes or tumor suppressor genes. In this study, we investigated the role of miR-145 in the pathogenesis of uveal melanoma. Methods Expression profiles of miRNAs in uveal melanoma were performed using Agilent miRNA array. Quantitative real-time polymerase chain reaction was used to screen the expression levels of miR-145 in normal uveal tissue, uveal melanoma tissue, and uveal melanoma cell lines. Lenti-virus expression system was used to construct MUM-2B and OCM-1 cell lines with stable overexpression of miR-145. Cell proliferation, cell cycle, and cell apoptosis of these miR-145 overexpression cell lines were examined by MTT assay and flow cytometry respectively. The target genes of miR-145 were predicted by bioinformatics and confirmed using a luciferase reporter assay. The expression of insulin-like growth factor-1 receptor (IGF-1R), insulin receptor substrate-1 (IRS-1) proteins was determined by Western blotting analysis. IRS-1 was knocked down in OCM-1 cells. TUNEL, BrdU, and flow cytometry assay were performed in IRS-1 knocked down OCM-1 cell lines to analyze its function. Results Forty-seven miRNAs were up regulated in uveal melanoma and 61 were down regulated. miR-145 expression was significantly lower in uveal melanoma sample and the cell lines were compared with normal uveal sample. Overexpression of miR-145 suppressed cell proliferation by blocking the G1 phase entering S phase in uveal melanoma cells, and promoted uveal melanoma cell apoptosis. IRS-1 was identified as a potential target of miR-145 by dual luciferase reporter assay. Knocking down of IRS-1 had similar effect as overexpression of miR-145. Conclusion miR-145 might act as a tumor suppressor in uveal melanoma, and downregulation of the target IRS-1 might be a potential mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.