Abstract

Clear cell renal cell carcinoma (ccRCC) is a malignant tumor of kidney epithelial cells, one of the most common tumors in the world. Transforming growth factor beta (TGFβ)1 is a crucial factor that induces epithelial-mesenchymal transition (EMT) in cancer cells. microRNA-141-3p (miR-141-3p) is a microRNA that is considered a tumor suppressor. However, the role and mechanism of miR-141-3p in TGFβ1-induced ccRCC cells are not fully understood. This study investigated the roles of miR-141-3p and its target gene in regulating EMT in ccRCC development. 786-0 and Caki-1cells were treated with TGFβ1 to induce EMT. The levels of miR-141-3p and TGFβ2 were determined by quantitative real-time polymerase chain reaction and Western blotting. The progression of EMT was evaluated by E-cadherin detection by immunofluorescence, and E-cadherin, N-cadherin, and vimentin detection by Western blotting. Furthermore, migration and invasion capacities were assessed using a Transwell system. The direct binding of miR-141-3p with the target gene TGFβ2 was confirmed by dual luciferase reporter gene assay. Results indicated that TGFβ1 treatment decreased the protein abundance of E-cadherin while increasing the protein expression of N-cadherin and vimentin, indicating TGFβ1-induced EMT was constructed successfully. Moreover, TGFβ1 treatment repressed the expression of miR-141-3p. miR-141-3p mimics reversed the effect of TGFβ1 on the migration, invasion, and expression of E-cadherin, N-cadherin, and vimentin. The miR-141-3p directly binds with the 3' untranslated region of TGFβ2 mRNA and suppresses its expression. Furthermore, TGFβ2 overexpression abrogated the above changes regulated by miR-141-3p mimics. Taken together, miR-141-3p inhibited TGFβ1-induced EMT by suppressing the migration and invasion of ccRCC cells via directly targeting TGFβ2 gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call