Abstract

The prognosis of patients suffering from glioblastoma [also referred to as glioblastoma multiforme (GBM)] is dismal despite multimodal therapy. Chemotherapy with temozolomide may suppress tumor growth for a certain period of time (a few months); however, invariable tumor recurrence suggests that glioblastoma initiating cells (GICs) render these tumors persistant. Thus, the understanding of the molecular mechanisms of action of GICs as regards their role in the progression of GBM is important as such knowledge will be helpful in the discovery of novel drug targets, as well as in the design of novel therapeutic strategies for more effective treatment of the disease. In this study, we found that tumor suppressor candidate 3 (TUSC3) was downregulated in temozolomide-resistant U87MG cells (U87MG-res cells) and its restoration sensitized U87MG-res cells to temozolomide. TUSC3 was able to inhibit the formation of GIC phenotypes in the U87MG-res cells. The overexpression of microRNA (miR)-132 inhibited TUSC3 protein expression in the U87MG cells. However, its overexpression did not degrade TUSC3 mRNA expression in the cells. miR-132 was upregulated in the U87MG-res cells and its overexpression induced temozolomide resistance and the formation of cancer stem cell phenotypes in the U87MG cells. Thus, our data indicate that miR-132 induces temozolo-mide resistance and promotes the formation of cancer stem cell phenotypes by targeting TUSC3 in glioblastoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.